Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice.

نویسندگان

  • Benoit Piegu
  • Romain Guyot
  • Nathalie Picault
  • Anne Roulin
  • Abhijit Sanyal
  • Hyeran Kim
  • Kristi Collura
  • Darshan S Brar
  • Scott Jackson
  • Rod A Wing
  • Olivier Panaud
چکیده

Retrotransposons are the main components of eukaryotic genomes, representing up to 80% of some large plant genomes. These mobile elements transpose via a "copy and paste" mechanism, thus increasing their copy number while active. Their accumulation is now accepted as the main factor of genome size increase in higher eukaryotes, besides polyploidy. However, the dynamics of this process are poorly understood. In this study, we show that Oryza australiensis, a wild relative of the Asian cultivated rice O. sativa, has undergone recent bursts of three LTR-retrotransposon families. This genome has accumulated more than 90,000 retrotransposon copies during the last three million years, leading to a rapid twofold increase of its size. In addition, phenetic analyses of these retrotransposons clearly confirm that the genomic bursts occurred posterior to the radiation of the species. This provides direct evidence of retrotransposon-mediated variation of genome size within a plant genus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice

Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. austra...

متن کامل

Broadening Gene Pool of Rice for Resistance to Biotic Stresses Through Wide Hybridization

Variability in the cultivated germplasm for economic traits such as resistance to rice tungro virus, sheathblight, yellow stem borer, drought and salt tolerance is limited. This necessitated search for the genes in secondary and tertiary gene pool of genus Oryza. Fortunately, wild species are an important reservoir ofuseful genes for resistance to major disease, pest and tolerance t...

متن کامل

Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza.

Rapid progress in comparative genomics among the grasses has revealed similar gene content and order despite exceptional differences in chromosome size and number. Large- and small-scale genomic variations are of particular interest, especially among cultivated and wild species, as they encode rapidly evolving features that may be important in adaptation to particular environments. We present a...

متن کامل

Genome-Wide Disruption of Gene Expression in Allopolyploids but Not Hybrids of Rice Subspecies

Hybridization and polyploidization are prominent processes in plant evolution. Hybrids and allopolyploids typically exhibit radically altered gene expression patterns relative to their parents, a phenomenon termed "transcriptomic shock." To distinguish the effects of hybridization from polyploidization on coregulation of divergent alleles, we analyzed expression of parental copies (homoeologs) ...

متن کامل

The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species

Oryza minuta, a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genome research

دوره 16 10  شماره 

صفحات  -

تاریخ انتشار 2006